欢迎访问优讯网!
您当前的位置:首页 > 爱编程

关于pytorch中全连接神经网络搭建两种模式详解

时间:2020-01-15 08:46:47  来源:优讯网  作者:小卡司  浏览次数:
今天小编就为大家分享一篇关于pytorch中全连接神经网络搭建两种模式详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

pytorch搭建神经网络是很简单明了的,这里介绍两种自己常用的搭建模式:

 
1
2
import torch
import torch.nn as nn

first:

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class NN(nn.Module):
 def __init__(self):
  super(NN,self).__init__()
  self.model=nn.Sequential(
   nn.Linear(30,40),
   nn.ReLU(),
   nn.Linear(40,60),
   nn.Tanh(),
   nn.Linear(60,10),
   nn.Softmax()
  )
  self.model[0].weight.data.uniform_(-3e-3, 3e-3)
  self.model[0].bias.data.uniform(-1,1)
 def forward(self,states):
  return self.model(states)

这一种是将整个网络写在一个Sequential中,网络参数设置可以在网络搭建好后单独设置:self.model[0].weight.data.uniform_(-3e-3,3e-3),这是设置第一个linear的权重是(-3e-3,3e-3)之间的均匀分布,bias是-1至1之间的均匀分布。

second:

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class NN1(nn.Module):
 def __init__(self):
  super(NN1,self).__init__()
  self.Linear1=nn.Linear(30,40)
  self.Linear1.weight.data.fill_(-0.1)
  #self.Linear1.weight.data.uniform_(-3e-3,3e-3)
  self.Linear1.bias.data.fill_(-0.1)
  self.layer1=nn.Sequential(self.Linear1,nn.ReLU())
 
  self.Linear2=nn.Linear(40,60)
  self.layer2=nn.Sequential(self.Linear2,nn.Tanh())
 
  self.Linear3=nn.Linear(60,10)
  self.layer3=nn.Sequential(self.Linear3,nn.Softmax())
 
 
 def forward(self,states):
  return self.model(states)

网络参数的设置可以在定义完线性层之后直接设置如这里对于第一个线性层是这样设置:self.Linear1.weight.data.fill_(-0.1),self.Linear1.bias.data.fill_(-0.1)。

你可以看一下这样定义完的参数的效果:

 
1
2
3
4
5
6
7
8
9
10
11
12
Net=NN()
print("0:",Net.model[0])
print("weight:",type(Net.model[0].weight))
print("weight:",type(Net.model[0].weight.data))
print("bias",Net.model[0].bias.data)
print('1:',Net.model[1])
#print("weight:",Net.model[1].weight.data)
print('2:',Net.model[2])
print('3:',Net.model[3])
#print(Net.model[-1])
 
Net1=NN1()

1 print(Net1.Linear1.weight.data)

输出:

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
0: Linear (30 -> 40)
weight: <class 'torch.nn.parameter.Parameter'>
weight: <class 'torch.FloatTensor'>
bias
-0.6287
-0.6573
-0.0452
 0.9594
-0.7477
 0.1363
-0.1594
-0.1586
 0.0360
 0.7375
 0.2501
-0.1371
 0.8359
-0.9684
-0.3886
 0.7200
-0.3906
 0.4911
 0.8081
-0.5449
 0.9872
 0.2004
 0.0969
-0.9712
 0.0873
 0.4562
-0.4857
-0.6013
 0.1651
 0.3315
-0.7033
-0.7440
 0.6487
 0.9802
-0.5977
 0.3245
 0.7563
 0.5596
 0.2303
-0.3836
[torch.FloatTensor of size 40]
 
1: ReLU ()
2: Linear (40 -> 60)
3: Tanh ()
 
-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000
-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000
-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000
   ...    ⋱    ...  
-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000
-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000
-0.1000 -0.1000 -0.1000 ... -0.1000 -0.1000 -0.1000
[torch.FloatTensor of size 40x30]
 
 
Process finished with exit code 0

这里要注意self.Linear1.weight的类型是网络的parameter。而self.Linear1.weight.data是FloatTensor。

以上这篇关于pytorch中全连接神经网络搭建两种模式详解就是小编分享给大家的全部内容了

来顶一下
返回首页
返回首页

原文链接:https://www.jb51.net/article/178460.htm


推荐资讯
如何下载旧版centos iso镜像 如何下载迷你mini版的centos镜像
如何下载旧版centos i
计算机的正确使用姿势 电脑痴如何正确的使用电脑
计算机的正确使用姿势
好用的后台管理的前端框架模版H-ui H-ui框架模版分享
好用的后台管理的前端
微信电脑多开方法 无需辅助电脑版微信双开方法分享
微信电脑多开方法 无
相关文章
栏目更新
栏目热门